Make your own free website on Tripod.com

Curiosidades

Ternos Pitagóricos

 

Dá-se o nome de ternos pitagóricos aos ternos de números naturais que verificam o Teorema de Pitágoras.

Exemplos:

3, 4, 5
6, 8, 10
5, 12, 13
9, 12, 15

Note-se que ainda poderíamos obter mais ternos desta família multiplicando 3, 4, 5 por outros números naturais. Por exemplo: 12, 16, 20 que resulta de multiplicarmos 3, 4, 5 por 4, etc...

 

 Por volta de 4000 a. C. os egípcios já conheciam um método de traçar ângulos rectos.

Utilizavam uma corda onde eram dados treze  nós de forma que o espaço entre eles fosse igual, isto é, a corda media 12 unidades, sendo cada unidade o espaço entre dois nós consecutivos.

    Em seguida, três pessoas seguravam a corda, unindo os dois nós extremos e a fim de construírem um triângulo cujos lados medissem 3, 4 e 5 unidades. Tinham assim a certeza de que o ângulo era recto.

    O processo descrito ficou conhecido pela corda dos treze nós. O que acontecia se a corda tivesse, por exemplo, 25, 37 ou mais nós? Vamos ver se existe alguma relação entre os comprimentos dos lados desse triângulos, observando a seguinte tabela:

CORDA

PERÍMETRO

Lados do triângulo

 

 

Catetos

Hipotenusa

13 nós

12 unidades

3,4

5

25 nós

24 unidades

6,8

10

37 nós

36 unidades

9,12

15

49 nós

48 unidades

12,16

20

 

    Como podes verificar, existe uma ligação entre os comprimentos dos lados do triângulo com o número de nós das cordas.

    Repara: com 49 nós obténs um triângulo de perímetro igual a 48 unidades, cujos lados medem 12, 16, 20 unidades. O perímetro tem uma unidade de diferença em relação ao número de nós da corda. 

    Se analisares outro pormenor, verás que o número de unidades da hipotenusa é sempre múltiplo de 5, e os dois catetos têm diferença de 1 unidade, 2 unidades, 3 unidades, etc., conforme a corda for de 13, 25, 37, ou mais nós.

    No entanto, existe outra ligação entre os comprimentos destes lados, que foi descoberta por Pitágoras de Samos. Este, ao analisar esses comprimentos, concluiu o seguinte: 

5² = 3² + 4²          10² = 6² + 8²          15² = 9² + 12².

   

Sabias que James Abram Gardield, presidente dos Estados Unidos durante 4 meses (pois foi assassinado em 1881), que também era general, fez uma demonstração do Teorema de Pitágoras? É verdade! Queres saber mais? 

    Considera a seguinte figura:

    A área do trapézio com bases a, b e altura a + b é igual à semi-soma das bases vezes a altura. Por outro lado, a mesma área é também igual à soma das áreas de três triângulos rectângulos. Portanto, wpe82.jpg (2665 bytes).

    Simplificando, obtemos wpe83.jpg (1203 bytes).

Sabias que o grande génio de Mona Lisa também concebeu uma demonstração do Teorema de Pitágoras? Pois é, Leonardo da Vinci também o fez...

    Observa que os quadriláteros [ABCD], [DEFA], [GFHI] e [GEJI] são congruentes.

    Logo, os hexágonos [ABCDEF] e [GEJIHF] têm a mesma área. Daí resulta que a área do quadrado [FEJH] é a soma das áreas dos quadrados [ABGF] e [CDEG]. 

 

 

 

Clique aqui para voltar a pagina inicial